Инсулин - самый молодой гормон

Строение

Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа.

Синтез

Инсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N-конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи. На данном этапе в молекуле проинсулина присутствуют А-цепь, В-цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для "созревания" гормона . По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина. В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn2+.

Схема синтеза инсулина
Схема синтеза инсулина

Регуляция синтеза и секреции

Секреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β-клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина.

Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина:

  • первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается,
  • вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в 15-25 раз.

Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β-клеток подключается к секреции инсулина.

Стимуляция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК.

Стимуляция секреции инсулина

1. После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе),

2. Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества,

3. В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови,

4. Накопление АТФ стимулирует закрытие ионных K+-каналов, что приводит к деполяризации мембраны,

5. Деполяризация мембраны приводит к открытию потенциал-зависимых Ca2+-каналов и притоку ионов Ca2+ в клетку,

6. Поступающие ионы Ca2+ активируют фосфолипазу C и запускают кальций-фосфолипидный механизм проведения сигнала с образованием ДАГ и инозитол-трифосфата,

7. Появление инозитол-трифосфата в цитозоле открывает Ca2+-каналы в эндоплазматической сети, что ускоряет накопление ионов Ca2+ в цитозоле,

8. Резкое увеличение концентрации в клетке ионов Ca2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу,

9. Далее происходит распад кристаллов, отделение ионов Zn2+ и выход молекул активного инсулина в кровоток.

Механизм регуляции секреции инсулина
 Схема внутриклеточной регуляции синтеза инсулина при участии глюкозы

Описанный ведущий механизм может корректироваться в ту или иную сторону под действием ряда других факторов, таких как аминокислоты, жирные кислоты, гормоны ЖКТ и других гормоны, нервная регуляция.

Из аминокислот на секрецию гормона наиболее значительно влияют лизин и аргинин. Но сами по себе они почти не стимулируют секрецию, их эффект зависит от наличия гипергликемии, т.е. аминокислоты только потенциируют действие глюкозы.

Свободные жирные кислоты также являются факторами, стимулирующими секрецию инсулина, но тоже только в присутствии глюкозы. При гипогликемии они оказывают обратный эффект, подавляя экспрессию гена инсулина.

Логичной является положительная чувствительность секреции инсулина к действию гормонов желудочно-кишечного тракта – инкретинов (энтероглюкагона и глюкозозависимого инсулинотропного полипептида), холецистокинина, секретина, гастрина, желудочного ингибирующего полипептида.

Клинически важным и в какой-то мере опасным является усиление секреции инсулина при длительном воздействии соматотропного гормона, АКТГ и глюкокортикоидов, эстрогенов, прогестинов. При этом возрастает риск истощения β-клеток, уменьшение синтеза инсулина и возникновение инсулинзависимого сахарного диабета. Такое может наблюдаться при использовании указанных гормонов в терапии или при патологиях, связанных с их гиперфункцией.

Нервная регуляция β-клеток поджелудочной железы включает адренергическую и холинергическую регуляцию. Любые стрессы (эмоциональные и/или физические нагрузки, гипоксия, переохлаждение, травмы, ожоги) повышают активность симпатической нервной системы и подавляют секрецию инсулина за счет активации α2-адренорецепторов. С другой стороны, стимуляция β2-адренорецепторов приводит к усилению секреции.

Также выделение инсулина контролируется n.vagus, в свою очередь находящегося под контролем гипоталамуса, чувствительного к концентрации глюкозы крови.

Мишени

К органам-мишеням инсулина можно отнести все ткани, имеющие к нему рецепторы. Рецепторы инсулина находятся практически на всех клетках, кроме нервных, но в разном количестве. Наибольшая их концентрация наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты - только 40 рецепторов на клетку.

Нервные клетки не имеют рецепторов к инсулину, который просто не проникает через βбарьер.

Механизм действия

Рецептор инсулина представляет собой гликопротеин, построенный из двух димеров, каждый из которых состоит из α- и β-субъединиц, (αβ)2. Обе субъединицы кодируются одним геном 19 хромосомы и формируются в результате частичного протеолиза единого предшественника.  Период полужизни рецептора составляет 7-12 часов.

При связывании инсулина с рецептором изменяется конформация рецептора и они связываются друг с другом, образуя микроагрегаты. 

Связывание инсулина с рецептором инициирует ферментативный каскад реакций фосфорилирования. Первым делом аутофосфорилируются тирозиновые остатки на внутриклеточном домене самого рецептора. Это активирует рецептор и ведет к фосфорилированию остатков серина на особом белке, называемом субстрат инсулинового рецептора (СИР, или чаще IRS от англ. insulin receptor substrate). Таких IRS выделяют четыре типа – IRS‑1, IRS‑2, IRS‑3, IRS‑4. Также к субстратам инсулинового рецептора относят белки Grb-1 и Shc, которые отличаются от IRS аминокислотной последовательностью.

Обобщенные эффекты инсулина
Два механизма реализации эффектов инсулина

Дальнейшие события разделяются по двум направлениям:

1. Реакции, связанные с активностью ферментов MAP-киназ – в целом управляют активностью хроматина.

2. Процессы, связанные с активацией фосфоинозитол-3-киназы – в основном контролируют метаболические реакции. Сюда же относятся процессы, которые регулируют активность глюкозных транспортеров и поглощение глюкозы клетками.

Тем не менее, такое подразделение условно, так как в клетке присутствуют ферменты, чувствительные к активации и того и другого каскадного пути.

Реакции, связанные с активностью фосфатидилинозитол-3-киназы

После активации IRS-белок и целый ряд вспомогательных белков способствуют закреплению на мембране гетеродимерного фермента фосфоинозитол-3-киназы, содержащего регуляторную p85 (название произошло от ММ белка 85 кДа) и каталитическую p110 субъединицы. Эта киназа фосфорилирует мембранные фосфатидилинозитолфосфаты по 3-му положению до фосфатидилинозитол-3,4-дифосфата (PIP2) и до фосфатидилинозитол-3,4,5-трифосфата (PIP3). Считается, что PIP3 может выступать в качестве мембранного якоря для других элементов при действии инсулина.

Образование фосфоинозитол-3-фосфата
Действие фосфатидилинозитол-3-киназы на фосфатидилинозитол-4,5-дифосфат

После образования указанных фосфолипидов происходит активация протеинкиназы PDK1 (3-phosphoinositide dependent protein kinase-1), которая вместе с ДНК-протеинкиназой (DNA-PK, англ. DNA-dependent protein kinase, DNA-PK) дважды фосфорилирует протеинкиназу B (также часто называемую AKT1, англ. RAC-alpha serine/threonine-protein kinase), которая прикрепляется к мембране благодаря PIP3

Фосфорилирование активирует протеинкиназу В (АКТ1), она покидает мембрану и перемещается в цитоплазму и ядро клетки, где фосфорилирует многочисленные белки-мишени (более 100 штук), которые обеспечивают дальнейший клеточный ответ:

Фосфоинозитольный механизм действия инсулина
  • в частности, именно действие протеинкиназы В (АКТ1) приводит к перемещению глюкозных транспортеров ГлюТ-4 на клеточную мембрану и к поглощению глюкозы миоцитами и адипоцитами.
  • также, например, активная протеинкиназа В (АКТ1) фосфорилирует и активирует фосфодиэстеразу (ФДЭ), гидролизующую цАМФ до АМФ, в результате чего концентрация цАМФ в клетках-мишенях снижается. Поскольку при участии цАМФ активируется протеинкиназа А, стимулирующая ТАГ-липазу и фосфорилазу гликогена, то в результате действия инсулина в адипоцитах происходит подавление липолиза, а в печени – остановка гликогенолиза.

  

Последовательность реакций активации фосфодиэстеразы
 Реакции активации фосфодиэстеразы
  • еще одним примером является действие протеинкиназы В (AKT) на киназу гликогенсинтазы. Фосфорилирование этой киназы инактивирует ее. В результате она не в состоянии действовать на гликогенсинтазу, фосфорилировать и инактивировать ее. Таким образом, влияние инсулина приводит к удержанию гликогенсинтазы в активной форме и к синтезу гликогена.

Реакции, связанные с активацией MAP-киназного пути

В самом начале развертывания этого пути в действие вступает белок Shc (англ. Src (homology 2 domain containing) transforming protein 1), связывающийся с активированным (аутофосфорилированным) инсулиновым рецептором. Далее Shc-белок взаимодействует с Grb-белком (англ. growth factor receptor bound protein) и вынуждает его присоединиться к рецептору.

Также в мембране постоянно присутствует белок Ras, который в спокойном состоянии связан с ГДФ. Поблизости из Ras-белка  находятся «вспомогательные» белки – GEF (англ. GTF exchange factor) и SOS (англ. son of sevenless) и белок GAP (англ. GTPase activating factor).

Формирование комплекса белков Shc-Grb активирует группу GEF-SOS-GAP и приводит к замене ГДФ на ГТФ в составе Ras-белка, его активации (комплекс Ras-ГТФ) и передаче сигнала на протеинкиназу Raf-1.

При активации протеинкиназы Raf-1 происходит ее присоединение к плазматической мембране, фосфорилирование дополнительными киназами по остаткам тирозина, серина и треонина, а также одновременное взаимодействие с рецептором инсулина.

Далее активированная Raf-1 фосфорилирует (активирует) киназу белка MAPK (англ. mitogen-activated protein kinase, также она называется MEK, англ. MAPK/ERK kinase), которая фосфорилирует фермент МАPК (или иначе ERK, англ. extracellular signal-regulated kinase). После активации МАPК напрямую или через дополнительные киназы

  • фосфорилирует белки цитоплазмы, например, фосфолипазу А2, вызывая появление арахидоновой кислоты и ее эффекты, или рибосомальную киназу, активируя процесс трансляции,
  • активирует протеинфосфатазы, приводя к дефосфорилированию многих ферментов. Так, например, активируемая в RAS-MAP-пути протеинкиназа pp90S6 фосфорилирует протеинфосфатазу, связанную с гранулами гликогена. После этого уже активная протеинфосфатаза дефосфорилирует и активирует гликогенсинтазудефосфорилирует и инактивирует киназу фосфорилазы и гликогенфосфорилазу, прекращая гликогенолиз.
  • передает инсулиновый сигнал в ядро, МАPК самостоятельно фосфорилирует и активирует ряд факторов транскрипции, обеспечивая считывание определенных генов, важных для деления и других клеточных ответов.
Последовательность реакций Ras, Raf, MAP, MAPK-kinase
MAP-зависимый путь реализации эффектов инсулина

Одним из белков, связанных с этим механизмом, является транскрипционный фактор CREB (англ. cAMP response element-binding protein). В неактивном состоянии фактор дефосфорилирован и не влияет на транскрипцию. При действии активирующих сигналов фактор связывается с определенными CRE-последовательностями ДНК (англ. cAMP-response elements), усиливая или ослабляя считывание информации с ДНК и ее реализацию. Кроме MAP-киназного пути фактор чувствителен к сигнальным путям, связанным с протеинкиназой А и кальций-кальмодулином.

В итоге инициация MAP-киназного пути преимущественно приводит к регуляции экспрессии разнообразных инсулин-зависимых генов, к клеточной пролиферации и клеточному росту.

Скорость эффектов действия инсулина

Биологические эффекты инсулина подразделяются по скорости развития:

Очень быстрые эффекты (секунды)

Эти эффекты связаны с изменением трансмембранных транспортов:

1. Активации Na+/K+-АТФазы, что вызывает выход ионов Na+ и вход в клетку ионов K+, что ведет к гиперполяризации мембран чувствительных к инсулину клеток (кроме гепатоцитов).

2. Активация Na+/H+-обменника на цитоплазматической мембране многих клеток и выход из клетки ионов H+ в обмен на ионы Na+. Такое влияние имеет значение в патогенезе артериальной гипертензии при сахарном диабете 2 типа.

3. Угнетение мембранной Ca2+-АТФазы приводит к задержке ионов Ca2+ в цитозоле клетки.

4. Выход на мембрану миоцитов и адипоцитов переносчиков глюкозы ГлюТ-4 и увеличение в 20-50 раз объема транспорта глюкозы в клетку.

Быстрые эффекты (минуты)

Быстрые эффекты заключаются в изменении скоростей фосфорилирования и дефосфорилирования метаболических ферментов и регуляторных белков. В результате возрастает активность

  • гликогенсинтазы (запасание гликогена),
  • глюкокиназы, фосфофруктокиназы и пируваткиназы (гликолиз),
  • пируватдегидрогеназы (получение ацетил-SКоА),
  • ГМГ-SКоА-редуктазы (синтез холестерина),
  • ацетил-SКоА-карбоксилазы (синтез жирных кислот),
  • глюкозо-6-фосфатдегидрогеназы (пентозофосфатный путь),
  • фосфодиэстеразы (прекращение эффектов мобилизующих гормонов адреналина, глюкагона и др).

Медленные эффекты (минуты-часы)

Медленные эффекты заключаются в изменении скорости транскрипции генов белков, отвечающих за обмен веществ, за рост и деление клеток:

1. Индукция синтеза ферментов

  • глюкокиназы и пируваткиназы (гликолиз),
  • АТФ-цитрат-лиазы, ацетил-SКоА-карбоксилазы, синтазы жирных кислот, цитозольной малатдегидрогеназы (синтез жирных кислот),
  • глюкозо-6-фосфатдегидрогеназы (пентозофосфатный путь),

2. Репрессия синтеза мРНК, например, для ФЕП-карбоксикиназы (глюконегогенез).

3. Повышает фосфорилирование по серину рибосомального белка S6, что поддерживает процессы трансляции.

Очень медленные эффекты (часы-сутки)

Очень медленные эффекты реализуют митогенез и размножение клеток. Например, к этим эффектам относится

1. Повышение в печени синтеза соматомедина, зависимого от гормона роста.

2. Увеличение роста и пролиферации клеток в синергизме с соматомедином.

3. Переход клетки из G1-фазы в S-фазу клеточного цикла.

Именно группой медленных эффектов объясняется "парадокс" наличия инсулинорезистентности адипоцитов при сахарном диабете 2 типа и одновременное увеличение массы жировой ткани и запасание в ней липидов под влиянием гипергликемии и инсулина.

Патология

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет.

Вы можете спросить или оставить свое мнение.