НАДН гликолиза могут доставляться в митохондрии

Молекулы НАДН, образованные в шестой реакции гликолиза, в зависимости от наличия кислорода имеют, как минимум, два пути своего дальнейшего превращения:

  • либо остаться в цитозоле и вступить в одиннадцатую реакцию гликолиза (анаэробные условия),
  • либо проникнуть в митохондрию и окислиться в дыхательной цепи (аэробные условия).

Челночные системы

Так как сама молекула НАДН через мембрану не проходит, то существуют специальные системы, принимающие атомы водорода от НАДН в цитоплазме и отдающие их в матриксе митохондрий. Эти системы получили название челночные системы.

Определены две основные челночные системы – глицеролфосфатная и малат-аспартатная.

На основании наличия алкогольдегидрогеназы во многих тканях, в том числе и в нервной, дискутируется вопрос о существовании этанол-ацетальдегидной челночной системы, однако однозначных экспериментальных доказательств пока не получено.

Глицеролфосфатный челночный механизм

Главными ферментами глицеролфосфатного челнока являются изоферменты глицерол-3-фосфат-дегидрогеназы – цитоплазматический и митохондриальный. Они отличаются своими коферментами: у цитоплазматической формы – НАД, у митохондриальной – ФАД.

В цитозоле метаболиты гликолиза – диоксиацетонфосфат и НАДН образуют глицерол-3-фосфат, поступающий в митохондрии. Там он окисляется с образованием ФАДН2. Далее ФАДН2 направляется в дыхательную цепь и используется для получения энергии. Таким образом, в результате действий челнока цитозольный НАДН+H+ как бы "превращается" в митохондриальный ФАДН2.

В действительности цитозольный глицерол-3-фосфат не проникает в матрикс, так как митохондриальная глицерол-3-фосфат-дегидрогеназа расположена на внешней стороне внутренней митохондриальной мембраны.  Она обеспечивает перенос атомов водорода от глицерол-3-фосфата на ФАДН2 и дальнейшую передачу их на коэнзим Q дыхательной цепи. 
Глицерол-фосфатный челнок
Схема работы глицерол-фосфатной челночной системы

Этот челнок активен в печени, в белых скелетных мышцах и в бурой жировой ткани. Однако в гепатоците в состоянии покоя и после еды часть глицерол-3 фосфата в митохондрию не пойдет, а будет использоваться в цитозоле для синтеза фосфолипидов и триацилглицеролов.

Малат-аспартатный челночный механизм

Главными ферментами этого челнока являются изоферменты малатдегидрогеназы – цитоплазматический и митохондриальный. Он является распространенным по всем тканям.

Этот механизм более сложен: постоянно идущие в цитоплазме при участии фермента аспартатаминотрансферазы (АСТ) реакции трансаминирования аспарагиновой кислоты с α-кетоглутаратом поставляют оксалоацетат, который под действием цитозольного пула малатдегидрогеназы и за счет "гликолитического" НАДН восстанавливается до яблочной кислоты (малата).

Последняя антипортом с α-кетоглутаратом проникает в митохондрии и, являясь метаболитом ЦТК, окисляется в оксалоацетат с образованием НАДН. Так как мембрана митохондрий непроницаема для оксалоацетата, то он при помощи аспартатаминотрансферазы трансаминируется до аспарагиновой кислоты, которая в обмен на глутамат выходит в цитозоль.

Таким образом, атомы водорода от цитозольного НАДН перемещаются в состав митохондриального НАДН.

Малат-аспартатный челнок
Схема работы малат-аспартатной челночной системы
-->